Kinin receptor agonism restores hindlimb postischemic neovascularization capacity in diabetic mice.

نویسندگان

  • Dorinne Desposito
  • Louis Potier
  • Catherine Chollet
  • Fernand Gobeil
  • Ronan Roussel
  • Francois Alhenc-Gelas
  • Nadine Bouby
  • Ludovic Waeckel
چکیده

Limb ischemia is a major complication of thromboembolic diseases. Diabetes worsens prognosis by impairing neovascularization. Genetic or pharmacological inactivation of the kallikrein-kinin system aggravates limb ischemia in nondiabetic animals, whereas angiotensin I-converting enzyme/kininase II inhibition improves outcome. The role of kinins in limb ischemia in the setting of diabetes is not documented. We assessed whether selective activation of kinin receptors by pharmacological agonists can influence neovascularization in diabetic mice with limb ischemia and have a therapeutic effect. Selective pseudopeptide kinin B1 or B2 receptor agonists resistant to peptidase action were administered by osmotic minipumps at a nonhypotensive dosage for 14 days after unilateral femoral artery ligation in mice previously rendered diabetic by streptozotocin. Comparison was made with ligatured, nonagonist-treated nondiabetic and diabetic mice. Diabetes reduced neovascularization, assessed by microangiography and histologic capillary density analysis, by roughly 40%. B1 receptor agonist or B2 receptor agonist similarly restored neovascularization in diabetic mice. Neovascularization in agonist-treated diabetic mice was indistinguishable from nondiabetic mice. Both treatments restored blood flow in the ischemic hindfoot, measured by laser-Doppler perfusion imaging. Macrophage infiltration increased 3-fold in the ischemic gastrocnemius muscle during B1 receptor agonist or B2 receptor agonist treatment, and vascular endothelial growth factor (VEGF) level increased 2-fold. Both treatments increased, by 50-100%, circulating CD45/CD11b-positive monocytes and CD34(+)/VEGFR2(+) progenitor cells. Thus, selective pharmacological activation of B1 or B2 kinin receptor overcomes the effect of diabetes on postischemic neovascularization and restores tissue perfusion through monocyte/macrophage mobilization. Kinin receptors are potential therapeutic targets in limb ischemia in diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ephrin-B2–Activated Peripheral Blood Mononuclear Cells From Diabetic Patients Restore Diabetes-Induced Impairment of Postischemic Neovascularization

We hypothesized that in vitro treatment of peripheral blood mononuclear cells (PB-MNCs) from diabetic patients with ephrin-B2/Fc (EFNB2) improves their proangiogenic therapeutic potential in diabetic ischemic experimental models. Diabetes was induced in nude athymic mice by streptozotocin injections. At 9 weeks after hyperglycemia, 10(5) PB-MNCs from diabetic patients, pretreated by EFNB2, were...

متن کامل

Tetrapeptide AcSDKP induces postischemic neovascularization through monocyte chemoattractant protein-1 signaling.

BACKGROUND We investigated the putative proangiogenic activity and molecular pathway(s) of the tetrapeptide acetyl-N-Ser-Asp-Lys-Pro (AcSDKP) in a model of surgically induced hindlimb ischemia. METHODS AND RESULTS Hindlimb ischemia was induced by femoral artery ligature and an osmotic minipump was implanted subcutaneously to deliver low (0.12 mg/kg per day) or high (1.2 mg/kg per day) doses o...

متن کامل

Thromboxane A2/prostaglandin H2 receptor activation mediates angiotensin II-induced postischemic neovascularization.

OBJECTIVE We analyzed the involvement of thromboxane (TX) A2/prostaglandin (PG) H2 (TP) receptor in ischemia-induced neovascularization in mice. METHODS AND RESULTS Unilateral hindlimb ischemia was induced by right femoral artery ligature in male C57BL/6J mice (n=7 per group). Animals were then treated with or without TP receptor antagonist (S18886, 5 or 10 mg/kg per day; ramatroban, 10 mg/kg...

متن کامل

Tumor Necrosis Factor- Receptor p75 Is Required in Ischemia-Induced Neovascularization

Background—Aging is a risk factor for coronary and peripheral artery disease. Tumor necrosis factor(TNF), a proinflammatory cytokine, is expressed in ischemic tissue and is known to modulate angiogenesis. Little is known about the role of TNFreceptors (TNFR1/p55 and TNFR2/p75) in angiogenic signaling. Methods and Results—We studied neovascularization in the hindlimb ischemia model in young and ...

متن کامل

Regulatory T cells modulate postischemic neovascularization.

BACKGROUND CD4+ and CD8+ T lymphocytes are key regulators of postischemic neovascularization. T-cell activation is promoted by 2 major costimulatory signalings, the B7/CD28 and CD40-CD40 ligand pathways. Interestingly, CD28 interactions with the structurally related ligands B7-1 and B7-2 are also required for the generation and homeostasis of CD4+CD25+ regulatory T cells (Treg cells), which pla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 352 2  شماره 

صفحات  -

تاریخ انتشار 2015